

Tetrahedron Letters 41 (2000) 9149-9151

A convenient method for the *N*-formylation of secondary amines and anilines using ammonium formate

P. Ganapati Reddy, G. D. Kishore Kumar and S. Baskaran*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India Received 14 September 2000; accepted 20 September 2000

Abstract

The N-formylation of secondary amines and anilines using ammonium formate as a formylating agent is described. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Keywords: ammonium formate; N-formylation; secondary amines and anilines.

Formamides are a class of important intermediates in organic synthesis. They have been widely used in the synthesis of pharmaceutically important compounds such as fluroquinolones,¹ substituted aryl imidazoles,² 1,2-dihydroquinolines,³ nitrogen bridged heterocycles,⁴ etc. Formamides are Lewis bases, which are known to catalyze reactions such as allylation⁵ and hydrosilylation⁶ of carbonyl compounds. More recently, asymmetric allylation of aldehydes has been achieved with chiral formamides.⁷ Furthermore, formamides are very useful reagents in Vilsmeier formylation reactions.⁸ In addition, they have been used in the synthesis of formamidines⁹ and isocyanides.

Numerous methods are available for the *N*-formylation of amines,^{10–13} however, many of these methods involve reagents which are either toxic or expensive. In this communication, we report ammonium formate as relatively less expensive and efficient *N*-formylating agent for secondary amines and anilines.¹⁴

 $\begin{array}{ccc} R_1^1 & HCO_2NH_4 & R_1^1 \\ NH & & \\ R^2 & CH_3CN, reflux & \\ & R^2 & \\ \end{array}$

Ammonium formate mediated N-formylation of secondary amines and anilines takes place readily in acetonitrile at reflux temperature and the yields are usually very good. However, under

* Corresponding author. Fax: 0091-44-2350509; e-mail: bhaskars@chem.iitm.ernet.in

similar reaction conditions, primary amines give alkyl ammonium formate salts, except benzylamine, which gave the desired *N*-formyl derivative in high yield.

The generality of this methodology has been studied with different secondary amines and anilines. The reaction time and yields are summarized in Table 1.¹⁵ The benzyl ester of L-proline (entry 3) was converted to the corresponding N-formyl compound without racemization

<i>N</i> -Formylation of secondary amines and anilines with ammonium formate					
Entry	Substrate	Eq. Of HCO ₂ NH ₄	Time (hours)	Product	Yield %
1	NH ₂	1.5	11	NH-CHO	96
2	NH ₂	1.5	6	NH-CHO	88
3	N H H H CO ₂ Bn	2.0	8	N CO ₂ Bn	75
4	€ C C C C C C C C C C C C C C C C C C C	2.0	12	СНО	93
5	H, CH ₃ NHCH ₃	1.5	9	H, CH ₃ NCH ₃ CHO	96
6	HNNH	3.0	8.5	онс-л л-сно	97
7	0NH	1.5	10	о	95
8	H ₃ C NH ₂	2.0	15	H ₃ C NH-CHO	71
9	O ₂ N-	1.5	7.5	O ₂ N	95

 Table 1

 N-Formylation of secondary amines and anilines with ammonium formate

 $\{[\alpha]_D = -42.9 \ (c \ 3, MeOH)\}$. 4-(Piperazinyl) nitrobenzene (entry 9) gave the corresponding *N*-formyl derivative in excellent yield, which is a useful precursor in the synthesis of oxazolidinone¹⁶ antibacterial agents. It is interesting to note that an aniline with a hydroxy group in the side chain (entry 8) undergoes chemoselective *N*-formylation in good yield.

Typical experimental procedure: To a solution of aniline (465 mg, 5 mmol) in dry acetonitrile (7.5 mL) was added anhydrous ammonium formate (473 mg, 7.5 mmol) and the resulting mixture was heated at 95°C (bath temperature) for 11 h. Acetonitrile was removed under reduced pressure. The residue was diluted with ethyl acetate (20 mL) and washed with water (2×10 mL). The organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure to yield pure formanilide (580 mg, 96%) as a low melting solid, mp 48–50°C.

In conclusion, we have developed a convenient and mild method for *N*-formylation of secondary amines and anilines in excellent yields using the less expensive ammonium formate. We believe this novel methodology will find wide application in organic synthesis.

Acknowledgements

We thank Professor K. K. Balasubramanian for his constant encouragement and generous support. P.G.R. (SRF) and G.D.K. (JRF) thank the CSIR, New Delhi for research fellowships.

References

- 1. Jackson, A.; Meth-Cohn, O. J. Chem. Soc., Chem. Commun. 1995, 1319-1320.
- Chen, B.-C.; Bednarz, M. S.; Zhao, R.; Sundeen, J. E.; Chen, P.; Shen, Z.; Skoumbourdis, A. P.; Barrish, J. C. *Tetrahedron Lett.* 2000, 41, 5453–5456.
- 3. Kobayashi, K.; Nagato, S.; Kawakita, M.; Morikawa, O.; Konishi, H. Chem. Lett. 1995, 575-576.
- 4. Kakehi, A.; Ito, S.; Hayashi, S.; Fujii, T. Bull. Chem. Soc. Jpn. 1995, 68, 3573-3580.
- 5. Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620-6628.
- 6. Kobayashi, S.; Yasuda, M.; Hachiya, I. Chem. Lett. 1996, 407-408.
- 7. Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron 1999, 55, 977-988.
- 8. Downie, I. M.; Earle, M. J.; Heaney, H.; Shuhaibar, K. F. Tetrahedron 1993, 49, 4015-4034.
- 9. Han, Y.; Cai, L. Tetrahedron Lett. 1997, 38, 5423-5426.
- 10. Djuric, S. W. J. Org. Chem. 1984, 49, 1311-1312.
- 11. Blicke, F. F.; Lu, C.-J. J. Am. Chem. Soc. 1952, 74, 3933-3934.
- 12. Yale, H. L. J. Org. Chem. 1971, 36, 3238-3240.
- 13. Strazzolini, P.; Giumanini, A. G.; Cauci, S. Tetrahedron 1990, 46, 1081-1118.
- N-Formylation of aniline with ammonium formate at 150°C has been reported in the patent literature. Farbenind, I. G. Ger. Pat. DE 462303; Fortschr. Teerfarben-fabr. Verw. Industriezweige 16, 361 (Beilstein citation number: 1907409).
- 15. Satisfactory spectral data were obtained for the purified chromatographically homogeneous materials and the yields refer to pure, isolated products.
- 16. Lohray, B. B.; Baskaran, S.; Rao, B. S.; Reddy, B. Y.; Rao, I. N. Tetrahedron Lett. 1999, 40, 4855–4856.